

iSnobal/AWSM modeling system improvements and plans for WY2019

Scott Havens, Danny Marks, Ernesto Trujillo*, Andrew Hedrick, Mark Robertson, Micah Sandusky, Micah Johnson* USDA Agricultural Research Service, Northwest Watershed Research Center, Boise, ID

* and UC Merced

Tom Painter, Kat Bormann, Judy Lai-Norling
NASA Jet Propulsion Laboratory, Pasadena, CA

AWSM update and ops

- Model backgrounds
- Motivation for improvements
- High Resolution Rapid Refresh (HRRR)
- WY2019 operational plans

iSnobal Overview

- Physically based snow model (Marks et al., 1999)
 - Mass and energy balance of the snowpack
- Varying spatial and temporal resolution
- Input data
 - Cooperative measurement network
 - Using HRRR atmospheric model for WY2019

Automated Water Supply Model AWSM

iSnobal

physically based model at the core of the modeling system

Everything else enables iSnobal simulations

Automated Water Supply Model (AWSM)

- Streamline and standardize water supply forecasts
- Reproducible science

r · Core Components

Station data

- CSV files
- MySQL database

Gridded

- Generic NetCDF
- WRF output
- HRRR output

SMRF

- Domain interpolation
- Point/gridded data to domain
- Flexible framework
- Reproducible

Models

IPW

• Hydro-climate utilities

iSnobal

- PySnobal
- Python wrapper

Data Analysis

SNOWAV

- Process outputs
- Analytics and insights
- Summary reports

AWSM Modeling System

- Standardization of modeling workflow
- Built on core components
 - Each can be used individually
- AWSM replicates what ARS modelers do
 - Modeling automation

Allows for real time modeling of multiple large watersheds

AWSM updating with ASO

Examples of 2 updates

- 1. 3/23/2014
 - First update of the year
 - Large increase in SWE with ASO update
- 2. 5/1/2015
 - eighth update of the year
 - Small absolute change in SWE storage, but large relative decrease.

Insets show how ASO redefines the solid precip distribution.

Power of ASO + iSnobal

- ASO defines the snow distribution
 - Snapshot of what is on the ground
- iSnobal
 - Continuous results between flights
 - Short term forecasts, "History Repeats Itself"
 - How will the basin react
- When pillows say "0", iSnobal +
 ASO will inform how much is left

Modeling project timeline

AWSM update and ops

- Model backgrounds
- Motivation for improvements
- High Resolution Rapid Refresh (HRRR)
- WY2019 operational plans

San Joaquin WY2018

Feb 26 storm event

High Resolution Rapid Refresh (HRRR) from NWS

San Joaquin WY2018

San Joaquin WY2018

Feb 26 storm

Accumulated SWI

2018-2-26 to 2018-3-3

- Surface water inputs similar
- Stations capture low elevation rain but not high elevation snow

Scaling up operations

- 90% of the time is spent on QC of station data
 - Multiply by 6 and we have a QC nightmare
- Atmospheric models provide spatially and temporally complete inputs to iSnobal
 - Great for areas with sparse measurement networks
- Scalable to larger and larger regions

AWSM update and ops

- Model backgrounds
- Motivation for improvements
- High Resolution Rapid Refresh (HRRR)
- WY2019 operational plans

HRRR

- Operation NOAA product
 - 3-km resolution
 - hourly updated
 - Data assimilation of satellite, radar and ground based obs
 - 18h forecast every hour, 36h every 6h
 - Started in 2015
- For real times run, we utilize the 01 forecast hour
 - Provides all variables needed for iSnobal

HRRR precipitation

- The most important input to iSnobal
- Steeper elevation gradients than stations, typically

HRRR wind

Problem: scaling from 3km to 50m

- Wind Ninja
 - USFS Rocky Mountain Research Station
 - Developed for wind forecasts in wildland fire applications
 - Mass and momentum solver
 - Built for operational use
- Accounting for fine scale topography on the wind field

HRRR ASO updates

- Putting it all together for WY2017 in the Tuolumne
- 1st update Jan 28
 - -8.6% change
- 2nd update Mar 2
 - +11.5%
- Significantly less change in SWE with HRRR than with station data

Change in SWE [mm] from Update on 2017-01-28

Change in SWE [mm] from Update on 2017-03-02

HRRR deficiencies

- HRRR is a model used as input to another model
 - Compounding biases
- Diurnal temperature does not have the range as seen in measurements
- Higher precipitation biases existed in earlier versions and have been reduced
- Continually evaluating HRRR throughout the winter

Current Tuolumne results

elevation [ft]

Running daily, automatically

• 29 KAF SWI

• 0 KAF SWE

AWSM update and ops

- Model backgrounds
- Motivation for improvements
- High Resolution Rapid Refresh (HRRR)
- WY2019 operational plans

WY2019 operational plans

		Basin	Report (PST)	Distribution schedule
2019 Priorities		Tuolumne River	Monday 8a	2 weeks
		Merced River	TBD	2 weeks
		San Joaquin River	Wednesday 12:00pm	2 weeks
		Lakes Basin	Wednesday 12:00pm	2 weeks
		Kings River	Tuesday 12:00pm	2 weeks
		Kaweah	TBD	2 weeks
		Boise River Basin	Thursday	As needed
		East fork	Friday	As needed

Month reports Jan 1 to Apr 1, bi-weekly after that

Geoserver

- Sharing geospatial data
 - One stop shop
- Allows us to share all products in a standard way
 - Model: 50m daily SWE, SWI and density
 - Flight: 50m depth
- Expectation is that any user can access the model results at any time
 - Perform their own analysis (i.e. ArcGIS, PRMS)
 - Show a current map on webpage

Automation

GOAL: Running daily, all basins

- Automate:
 - Push model results to Geoserver
 - Model updating after flight and repushing to Geoserver
 - Results should show up on Geoserver within a day
- Automation gives us more time to validate model results

Keys to success in WY2019

- 1. Feedback on results, modeling new and unfamiliar basins.
- 2. Snow.

Questions

- danny.marks@ars.usda.gov
- scott.havens@ars.usda.gov
- mark.robertson@ars.usda.gov